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EXTENSION OF HOMOGENEOUS FLUID METHODS TO THE CALCULATION OF
SURFACE DISTURBANCE INDUCED BY AN OBJECT IN A STRATIFIED OCEAN

INTRODUCTION

The surface disturbance induced by a submerged body has been a problem of considerable
interest to theoretical hydrodynamicists and others for decades. For simplicity, most theoretical
calculations have been limited to homogeneous fluids. The results have been used to account
for wave resistance, stability of ships, and other matters important for ship design. The status
of the theory and calculations prior to 1951 has been reviewed bv Lunde [ 1]. Many calculations
have modeled the submerged body by a distribution of point sources and sinks, designed to pro-
vide streamlines which are tangent to the submerged body. Calculations of surface displacement
in a homogeneous fluid were performed by Yim using this method [2]. A submarine was modeled
by a separated point source and point sink pair for the hull and by a line dipole source and line
dipole sink for the sail. Later, Yim's calculations for the localized part of the surface disturbance
due to the hull were extended to deeper depths [3]. The surface disturbance due to a submerged
point source is initially of interest. Once this result is in hand, the disturbance from a distribution
of sources and sinks is obtained by simple linear superposition.

Over the last dozen years or so, several studies of submerged bodies in more realistic ocean
environments, which include a density depth dependence, have disclosed other effects which must
be accounted for. Some of these are indicated in Fig. 1. We note first a hull, simulated by a point
source and point sink of strength q. The surface displacement 4 calculation due to the hull has
been mentioned above. The density p depth dependence is shown. Associated with it is a Brunt-
Vaisala (B-V) frequency N, proportional to the logarithmic derivative of p. A fluid element
displaced upward will find itself in a lighter mass environment and sink back down. Similarly,
a fluid element displaced downward will experience a restoring force upward. The B-V frequency
is essentially the oscillation frequency of such a fluid element. An idealized N2 depth dependence
is also shown in Fig. 1. Three layers are clearly discernible: (a) a surface layer down to some
depth, (b) a thermocline layer where the density is rapidly varying, and (c) the rest of the ocean
below the thermocline. Actually, the N2 profile does not ordinarily have the inverted-square-well
profile shown in Fig. 1, but, for convenience, this will be the model for our computer calculations
of the localized disturbance.

A turbulent wake behind the hull is also indicated in Fig. 1. The point source and sink
used for the hull do not include the contribution of the turbulent wake to surface disturbance.
In its growth stage the turbulent wake will entrain more and more of the surrounding fluid until
the energy of the turbulence exceeds the potential energy of entrainment, which exists because
fluid elements have been displaced away from their equilibrium positions. At this point wake
collapse begins and takes place on the time scale of the inverse B-V frequency. In wake collapse,
the turbulent wake squashes down vertically and spreads out horizontally. Wake collapse is
thought to be accompanied by significant internal wave generation, which is a manifestation of

Manuscript submitted October 16, 1975.
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Fig. I - Schematic illustration of a hull in a stratified ocean. Some of the features shown are an induced surface displace-

ment A, the point source and sink of strength q used to simulate the hull, a turbulent wake, and model depth dependence

for the densityp and squared Brunt-Vaisala frequencyN 2 .

the aforementioned fluid oscillation in a density-stratified medium. The phenomenon has been

studied both experimentally and theoretically. Reference 4 includes a survey of previous work
on wake collapse. The prevailing theoretical approach is to treat the fully expanded wake as a

mixed region of quiescent fluid and to employ its density distribution as an initial condition in

the numerical solution to the two-dimensional Navier-Stokes equations, involving the y and z

coordinates (see Fig. I) and time (the so-called 2d + t approximation). The displacement of the
effects relative to the hull in the x direction is very simply related to the time-i.e., linearly

through the hull's velocity. The surface boundary condition employed in the calculations is that
of zero displacement. It is often referred to as the "rigid-lid" boundary condition.

It is convenient to refer to the near field and the far field in describing previous calculations.

The near field rather arbitrarily describes the region on the surface within one hull depth (or length,
whichever is larger) away from the source projection on the surface. By "source" we mean here,

for example, the hull displacement region or portion of the turbulent wake under consideration.
Similarly, the farfield will refer to regions on the surface at distances substantially further than

one hull depth (or length) from the source projection on the surface. The Bernoulli depression is

a near-field disturbance to which gravity waves make a substantial contribution. The Kelvin
wake calculation of Yim [2] uses a fairly elaborate stationary phase method which is valid for
the far field. All such gravity-wave effects require a free-surface boundary condition for their
description.

2
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There have been several recent calculations of internal wave contributions to surface distur-
bance which utilize a rigid-lid boundary condition for model density stratifications. Carrier and
Chen [5] utilize a limited eigenfunction expansion to describe the wavelike hydrodynamic
effects from a submerged body in the far field. Their model employs a B-V frequency which is
zero, except for a thermocline layer where the B-V frequency is some positive constant. This
is similar to the B-V square-well model that we shall employ for our calculations. A delta-function
B-V frequency for the thermocline is an idealized limit of the square-well model used by Carrier
and Chen [5], and this delta-function model has recently been used to calculate near-field internal
wave contributions from a moving point dipole [6]. Substantial contributions from internal waves
were found. Miles [7] had previously used this model and a constant-stratification model in the
calculation of internal wave effects from a slender body in the far field. For completeness, we
mention another TRW report by Hindman [8] on internal waves from collapsing wakes, although
the author has not seen it yet. Finally, Piacsek [9] has performed rigid-lid calculations of surface
fluid velocity and rate of strain from wake collapse for very many B-V profiles. These profiles
are realistic fits [10] to measured, seasonally averaged, B-V profiles for the world oceans.
Piacsek's calculations involve a full numerical solution of the Navier-Stokes equations in the
2d + t approximation and should therefore yield the internal wave surface disturbance from wake
collapse in the near and far fields. Piacsek also has performed calculations (unpublished) on
the effects of current shear.

It has become clear that a unified treatment of all the various hydrodynamic effects from a
submerged source and its surface manifestation is desirable. We should like to include realistic
B-V profiles in the formalism. Further, the interplay of gravity waves and internal waves can be
important. Certainly, the Bernoulli depression, Kelvin wake, and other effects associated with
gravity waves are dominant under some circumstances; the effects of internal waves are dominant
in others. There is an intermediate region where both types of effects are important. We would
like a unified treatment to be capable of including both hull displacement and turbulent wake
effects, especially with regard to induced surface disturbance.

This report gives one possible unified treatment. It represents an extension or the homo-
geneous fluid approach taken by Yim [2]. Some important similarities are as follows. A free-
surface boundary condition is used so that both gravity and internal wave effects can be taken into
account correctly. A reference frame fixed to the hull is used, so that the fluid velocity components
appear to be (U + u, v, w) in Fig. 1, where the hull is moving with speed U in the negative x-direc-
tion. Here (u, v, w) are the fluid velocities induced by the submerged body, which are treated
as small in a standard linearization of the Navier-Stokes equations. This choice of reference
frame eliminates the time dependence. A two-dimensional Fourier transform in surface coor-
dinates (x and y in Fig. I) is used. The formalism includes both near- and far-field effects. Further,
a separation of the various effects is made with the assistance of contour integration techniques.
Initially, we concentrate on fluid disturbance induced by a submerged point source. The phi-
losophy is that the effects of hull displacement and turbulent wake on the surface can later be
taken into account by a suitable distribution of point sources and sinks. The corresponding
expressions are obtained by simple algebraic manipulation of the point-source expressions,
based on linear superposition.

The extensions of the homogeneous fluid approach are as follows. To include a realistic B-V
profile we perform a full eigenfunction or normal mode expansion, appropriately defined, in the
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z-dependence of the two-dimensional Fourier-transformed Navier-Stokes equations. This is
similar to the approach of Carrier and Chen [5], who essentially used a limited eigenfunction
expansion to describe far-field internal wave effects with a model B-V profile and with a rigid-
lid boundary condition. We use a full eigenfunction expansion with a free-surface boundary
condition, which is pointed to the arbitrary B-V profile case, and a description of both near-
and far-field effects from both gravity and internal waves. We obtain expressions for the z-
component of fluid velocity induced by a point source. The effects of surface tension are also
included in the formalism.

The general formalism is developed in the following section for the solution of the problem
of the flow velocity induced by a point source in a density-stratified, incompressible fluid. In the
third section, expressions are obtained for a square-well model B-V profile, as indicated in Fig.
1. The B-V frequency is equal to some arbitrary nonnegative constant in this model, except
in the thermocline region, where it can be a larger positive constant. Numerical computations
of the localized surface disturbance from a submerged hull are then performed for a variety of
stratification models, which include square-well fits to several representative smoothed B-V
profiles. Finally, these results are compared to the results of rigid-lid calculations of surface
disturbance induced by wake collapse [9]. The results of this work are discussed in the last
section. The reader is urged to refer to the Contents page included with this work, where a more
complete listing of topics is included. He may wish to avoid reading those parts that are of no
immediate consequence to him.

There are parts of this work which seem to be new, or at least, not readily available in the
literature of fluid dynamics. They include (a) a fuller exploitation of the eigenfunction expansion
method for solving the Fourier-transformed equations of motion in a density-stratified, incom-
pressible fluid, subject to a free surface boundary condition, (b) a more complete treatment of
surface tension effects, (c) a calculation of the localized surface disturbance induced by the hull
which includes both gravity and internal wave effects, and (d) a fuller evaluation of the relative
importance of the localized surface disturbance caused by the hull and internal wave effects on the
surface induced by wake collapse. In the computations a wide variety of stratification models
was used, including various constant stratifications and square-well fits to several representative
smoothed B-V frequency profiles. Surface displacements and rates of strain were computed,
an angular dependence of localized surface disturbance was calculated for a particular case,
and a dramatic resonance enhancement associated with square-well thermoclines was found.
It is hoped that this work will help enable the inclusion of internal-wave and gravity-wave effects
in future calculations of localized and wavelike contributions to the surface disturbance induced
by a submerged body in a density-stratified fluid.

GENERAL FORMALISM FOR A SUBMERGED POINT SOURCE

Linearized Equations of Motion for an Incompressible Fluid

The equation of motion of an incompressible viscous fluid is [11]

dv
Pdt=-Vp-pgz+ V2v, (I)

4
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where p, v, p, z, and [L are, respectively, the density, velocity, pressure, unit vector in the z
direction, and dynamic viscosity in the fluid at a particular point. The entity g is the acceleration
due to gravity. We adopt the coordinate system shown in Fig. 1. The coordinate axes move at
the constant velocity of the point source, which is in the negative x direction and has magnitude
U. In these coordinates the fluid velocity v = (U + a, v, w). There is no explicit time dependence
in the problem, since it is assumed that the fluid is quiescent in the absence of the point source.
Hence,

dv = (V V)v = U-. (2)
dt ax

Here we see one of the approximations which enters into the linearization of Eq. (1).

In the region of interest (e.g., near the surface) the fluid velocity components a, v, and w,
which are induced by the point source, are much smaller than the velocity of the point source.
Similarly, the density and pressure can be written as

P = PO(z) + p'(x,y,z)

and
P =P 0 (Z) +p'(x,y,z),

where p,(z) and pj(z) are the density and pressure in the absence of the point source, which are
assumed to be much larger than the induced density and pressure p' and p' in the region of interest.
From Eq. (1) we have

POZ + Po gz= 0, (3)

where poz denotes apI)/az, and similarly for x and y subscripts which will be used. To first order
in the induced entities, the components of Eq. (1) become:

po Uu.l + p1'- 1jV = 0 (4)
po Uv,+p,'-DaV 2 v=O (5)
po Uwx,. + p, I + p ''g -V 2 w = 0. (6)

These are the linearized equations of motion.

At first sight it may appear strange that the viscosity terms are kept at all in Eqs. (4)-(6).
It is known, for example, that some of the terms thrown out of p(v . V)v in the linearization
(see Eq. (2)) are much larger than the viscosity terms. They are larger by a factor of the Reynold's
number which is known to be extremely large for this problem. The viscosity terms are kept, for
now, because they represent the causality assumptions in the problem - viz, the only guarantee
in our equations that if the point source is removed, the induced perturbations will decay with time.
The significance of this will be shown below. The author believes that this method of incorporating
causality assumptions by means of viscosity is not dissimilar to a "frictional" force approach
originated by Kelvin. The approach of linearizing the equations of motion is also standard [1,6].

From Eqs. (4) and (5) one obtains

(po Ualax-pAV 2 ) (u,-oV)=O,

r
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which is implied by u,, = v.,. Hence, we assume that these velocity components can be obtained
from a scalar potential ¢(x, y, z):

u and v = (7)

Next we write the equation of continuity for an incompressible fluid, for which

dP = 0 = (v V)p = Ups' + Wpoz (8)

For a point source of strength M at position r. = (XSy.SzS), the equation of continuity becomes

V V = I O.r + (A!/ + Wz = M8(x - xs)6(y- ys)8(z - Z.). (9)

The point source is seen to be adding fluid to its environment at the rate of M volume units per
unit time. A distribution of point sources and sinks can be used to simulate the effect of an object,
as will be discussed later. After Eq. (7) is substituted into Eqs. (4) and (5) it is seen that Eqs.
(4) - (6), (8), and (9) are five coupled linear differential equations for the six unknowns, 0, w,
p.,, p,', p,', and p'. We need another equation, which is the free-surface boundary condition
(an infinitely deep ocean is assumed).

Free-Surface Boundary Condition

Another form of Eq. (1) which is approximately valid near the free surface is

p(V V)v = p7(V 2) -V (p + pgz - /1tV2¢),
2

where we have used Eq. (7) and the fact that

w = ma, (i.e., v ~ VOx)

near the surface. Along a streamline (e.g., the free surface) p does not vary (see Eq. (8)), so that

- pV2 + p + pgZ - tL.72 = const.
2 (10)

along a streamline. This is essentially Bernoulli's equation for steady flows [12]. Lunde [1]
included a frictional term similarly to our inclusion of viscosity. The right-hand side of Eq.
(10) can be taken to the value of the left-hand side far upstream or downstream of the source,
so that if pm is the ambient pressure just above the surface and z0 is the undisplaced surface
level, we have

I PO + p + pgz- LV2 4O 2pU2 + p, + pgzO. (11)
2 2

The free-surface displacement is 4 (e.g., see Fig. 1), so that z = z0 + 4(x,y). Just below the free
surface, p is related to p,, byt

tSee Ref. I 1, Sec. 60.

6



NRL REPORT 7942 7

r--

P Pa +T(RLP + P - T ()2]32 (12)
\R R/ [I + cm6I "

where T is the surface tension coefficient and R, and R2 are the principal radii of curvature at a M

given point of the surface. Combining Eqs. (11) and (12) and linearizing, we obtain

-TV 2E, + pog4 + po USA3 - ,IV2 0 = 0. (13)

as the free-surface boundary condition. Another unknown variable A has been introduced, but it
is related to w through the kinematic boundary condition at the free surface:

W/z=z0 = dEIdt = (v V)4 = Ut.a (14)

Fourier-Transformed Equations

It is customary [ I ] to use the two-dimensional Fourier transform (FT) on x and y coordinates
(see Fig. 1) in order to simplify the solution of the preceding equations. It is given, for example, by

W(x y1z) -( 2 1T)-2 ff w(4,mz) ei(tx+ly) dudq + c.c., (15)

where the FT of w is W, and analogously for the other fluid entities. The integration in the first
term is limited to the half-space e > 0, and the term c.c. denotes the complex conjugate of the first
term on the right in Eq. (15). We can apply the FT to the previous equations. For the sake of
discussion, we give the FT of one of the equations of motion (i.e., Eq. (6)) and of the free-surface
boundary condition (i.e., Eq. (13)), which appear as

po ui(e - i NU W P' + Z g- 0

and

(TK2 + pg) + ipoU( -i K - - = 0. (16)~ + pou~ - iPo UOZ=0.(6

Here we have used the definition K2
= e2 + ?72, which is a consequence of a transformation from

rectangular coordinates (V, ') to cylindrical coordinates (K, 0)

K cos 0
and

1= K sin 0,
where

_ < 0 < 2Tfor 6 > 0.
2 2 (17)

We intend to drop the relatively negligible viscosity term now, after we notice its effect. The effect
is that ( is to be regarded as having an infinitesimal negative imaginary part. This is essentially
an effect of causality and will be seen later to have the profound consequence that wavelike hydro-
dynamic effects are largely restricted to the half-space behind the hull. In fact, this statement itself
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is the causality assumption used by many authors. Hence, we drop the viscosity terms with
this understanding about 6. The FT of the equations of motion (4)- (6) combined with Eq. (7) is

Po Ui(o + p' = 0 (18)

po Uiew+ p' + pg= 0. (19)

We now eliminate the pressure terms from these two equations by taking the z derivative of
Eq. (18) and subtracting it from Eq. (19) to obtain

if Upo [w-z -(pozlpo)k] =-p'g. (20)

Since poz/pO is of order 10- 4
m-

1
, or less, we neglect the third term in square brackets compared to

the second term, which is of order +L where L is a characteristic length of the order of the point-
source depth. One then uses the FT of the incompressibility equation (Eq. (8)), which is

i(Up' + P/)ZW = 0 (21)

Substitution into Eq. (20) yields

Ax = w-(N2 /U 2gt2) w, (22)

where N2 (z) =-gpozlpo and N(z) is the B-V frequency. The equation of continuity (Eq. (9))
becomes

wz -K2 ( = M8(z -z,) exp {- ix - hq7 ys}. (23)

These equations are subject to the boundary conditions at the free surface (Eqs. (13) and (14)),
which are

[TK2 + pog1r + poUi(O(0) = 0 (24)

w(0)m= i (25)

where w(0) and 4(0) are the values of w = w(z) and 4 = +(z) at r = 0 in first order theory. We can
combine Eqs. (22) and (23) and then Eqs. (23) - (25) to obtain

izz + -(Z2 _ K2) = M8z(z - z) exp (- ifx, - i ys) (26)

for the motion equation for w and

K)w(O) = cos2 0 w(0),

where

K')- TK 2 + U (27)
POPz U

2

for the free-surface boundary condition satisfied by w.

8
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Solution for W`

For the moment, we ignore the presence of the surface and extend the definition of N 2 d
beyond the free surface (z > zo) in some convenient, continuous fashion. For example, N2(z) MI
could be smoothly extended to zero, or to a particular constant value in accordance with a partic-
ular analytic fit in a model calculation. We then are faced with the problem of finding the solution
to a wave equation (Eq. (26)) in an infinite medium. The solution will thus be a particular solution,
which will be found in this part through an eigenfunction expansion. The eigenvalue problem
associated with Eq. (26) is defined by

-uzz + Wa(z)u = Xu,

where

Wo(z) -N
2 (z)/U 2 cos 2 0, (28)

which is written this way to emphasize the fact that it is a one-dimensional Schrodinger equation
where - N2/U2cos2 0 plays the part of the potential energy. For simplicity of description, we
assume that N2 tends to zero at great distances away from the region of interest. There is no
difficulty in handling the case where N2 tends to a constant value, as we shall see below. A partic-
ular solution w, of Eq. (26) can be expanded in terms of the eigenfunction solutions of Eq. (28):

WI) = EXA,,UO + f dkA(k)u,, (29)

where the first term denotes the sum over the discrete bound states and the second term denotes
the integral over continuum states. The expansion also includes degenerate eigenfunctions. We
define the real eigenvalues by

_ {-k,,2 for bound states (X < 0) l
l k2 for continuum states (A > 0)1 (3)

The u,, and ul, comprise a complete orthonormal set, and it is straightforward to utilize these
properties in the substitution of Eqs. (29) and (30) into Eq. (26) to obtain the expansion coeffi-
cients. The result is

W (z) = M exp(- tx - )-i7ly) I K2 -k,,K 2 +- dk 12 A K 2 + k2 (31)
0

where, e.g., u,,z(zs)* is the z partial derivative of u,,(z)* evaluated atz=z,.

To the particular solution just found we must add a general solution WH of the homogeneous
equation associated with Eq. (26) (i.e., without source term), which is adapted to satisfy the
free-surface condition, Eq. (27). The solution iwn will have the property that

WH(Z) - Aqe'c as z --- X (32)

The asymptotic solution exp(- Kz) is ruled out since it diverges in this limit. The constant A is
chosen so that Eq. (27) is satisfied. The general solution is found analytically for some potentials,



M. H. REILLY

but Eq. (32) can generally serve as the initial condition in a numerical integration of the homog-
eneous differential equations in order to find wn. The fact that exp(Kz) diverges as z - - is of
no consequence, as this is outside the region of interest (z < zo). If we were dealing with an ocean
of finite depth, Eq. (32) would be replaced by the condition that wl, = - iwp at the ocean floor
z-coordinate. The economy of the above approach is illustrated for the homogeneous fluid case
in Appendix A.

Now we suppose that we have the more general situation, where N approaches a constant
value at great depths:

N2(z) - N( 2 as z - ,(33)

and the extension of N2 forz > 0 is to a constant value less than or equal to No2 . Then it is possible
to regain the description above by regrouping terms in Eq. (26). The modifications are easily
obtained:

Vo - - (N2 - N , 2)/U 2 cos 2 0 in Eq. (28);
(34)

K 2 - K 02 K 2 - N( 2 /U2 cos 2
0 in Eq. (31).

The full solution is thus

w = iP1(z) + WI,(z), (35)

where wi,(z) is given by Eqs. (31) and (34) and w ,,(z) is a general solution. This solution satisfies

m / + (2 co 2 K2) ) =o, (36)

the conditions of Eqs. (32) and (34), and the free-surface boundary condition of Eq. (27), which
becomes

cos 2 0iVi11Z -K(WI, =-CoS
2 0z,, + Kowp. (37)

This is tantamount to adjustment of the constant A in Eq. (32).

Evaluation of w: Contour Integration Techniques

The solution w is given by Eq. (15), where we have seen that the ( integration corresponds
to a contour infinitesimally displaced beneath the real f axis in the complex e plane. From the
definition in Eq. (17) we have K = (e2 + q2)112 from which it is easy to show that if e is given an
infinitesimal negative imaginary component, so also is K given an infinitesimal negative imaginary
component. Hence, if we set the origin of surface coordinates at the point of surface projection
of the source (x,, y.) and define cylindrical coordinates with respect to it by

x = R cos 8, y = R sin e 0 - $ < 2n, (38)

we can write Eq. (15) in the cylindrical coordinates of Eq. (17) as

s/2

w = (2ir)-2 f d f Kii3(Ko, 0, z)e iKl dK + c.c., (39)
-i*/2 C

to
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where co R cos(0 - 8). Here, K6 is as given in Eq. (34), and the contour C is taken to be parallel
to and infinitesimally displaced beneath the positive real K axis in the complex K plane.

From Eq. (31), we see that the K integration will have to contend with poles on the real
axis associated with the values K,, _ [k,,2 + No2/(U 2 cos 2 0)]1j2. There are other poles which
will arise. For example, in the homogeneous fluid case (Refs. 1 and 2 and App. A) there is another
pole on the real axis at K0 sec 2 0 (neglecting surface tension) which gives the Kelvin wake contribu-
tion in contour integration. Other poles away from the real axis can also arise, as we shall see
in the point source discussion. From Eqs. (39) and (40) and the fact that w is not an even function
of Ko,we see that it will be necessary to have a branch cut from K = 0 to K = No/U cos 0 on the
real K axis. In our use of contour integration, it will be necessary to exclude this branch cut
from within any closed contour that we form. For example, the residue theorem demands it; it
applies to a function w which is analytic except for isolated poles, and single-valued within and
on a closed contour.

Suitable closed contours are shown in Fig. 2 for the two cases w > 0 and co < 0. With respect
to the simpler case a) < 0 and Fig. 2b, the original K integral .f KdK.... in Eq. (39) can be written
in terms of the integral along the contour Cl', which is along the negative imaginary axis;

KdK ... =-j KdK... -fmdm....
c cK...= tf o (40)

since K =-im(m > 0) along the negative imaginary axis. We substitute this into (see Eq. (34))

Ko(K) = [K2 - No2/(U2 cos2 0)] 1/2 (41)

and we obtain from Eqs. (39) and (40) that

f KdK ... =- mdm w(Ko(- im), 0, z)em'.
fC ~~~~~~0

In the case co < 0, as R gets larger, the exponential dumping factor exp(mwo) has a larger effect,
so that it is clear that the integral along the contour Cl' gives a disturbance more or less localized
to the vicinity of the hull. This is the mnemonic significance of the "2" subscript which will be
used again. Hence, for the region of the 0 integration for which W < 0 we get only a localized
disturbance contribution. Though we have not stated it, the contribution of the quarter-circle
part of the contour CR' with infinitely large radius is vanishingly small for R $ 0.

In contrast, the situation for wo > 0 in Fig. 2a is more complicated. The integral along C is
written in terms of the contour C, along the imaginary axis, but also the contour C, around the
branch cut makes a contribution, as do the residue contributions from the simple poles on the
K, axis and elsewhere within the contour of Fig. 2a:

KdK . . . =- KdK . . .- I KdK . .. + 27Ti (Ks). (42)
c c1 C,

I I
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T - -Kx
e

(a) Contour for X > 0

Ezzz~-x-X-X- -X- - ----Kx
C

(b) Contour for co < 0

Fig. 2 - K-plane contours for K integral in Eq. (39). The integral in the text is
along the contour C which is displaced an infinitesimal distance e below the K,
axis. Indicated on the K., axis is a branch cut in the interval 0 S K.r sNo/(Ucos
0) as well as poles indicated by x marks.

-Kyi

1 2
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Similarly to the discussion following Eq. (41), the first integral on the right gives a localized
disturbance and is therefore important for the near field. The second term on the right arises
from a constant-stratification background (thus the mnemonic significance of the subscript s),
and since it involves contributions around the real K, axis it is potentially important for both
the far and near fields. This statement follows from the oscillatory behavior of exp(iKco) as R
gets larger. It also applies to the residue contribution, which is the last term on the right in Eq.
(42). These terms are clearly wavelike for poles on the K, axis because they involve contributions
proportional to exp(iKaw). Many of the preceding considerations will be clarified by evaluating
Eq. (39) for a model B-V profile in the next section.

The significance of causality is now clear. Its mathematical consequence is that extra wave-
like contributions are included for X > 0 but are absent for o. < 0. These extra contributions
appear in the far field to the rear of the hull.

POINT SOURCE IN A MODEL OCEAN ENVIRONMENT

The Model

The model B-V frequency profile is shown in Fig. 1. As indicated in Eqs. (28) and (34),
the model is defined as a square-well potential of depth

= - (N2 - N,2 )I(U2 cos2 0) -Ve- V/cos2 0 (43)

amidst a background constant reference potential of

W/r = - N(2/(U2 cos2 0) - Vor- Vr/cos2 0, (44)

where the defined V parameters are positive. We can define our model more completely in terms
of these parameters as follows:

Vr U2 for-H < z < o [Reg. l]
N2 = (V+ Vr) U2 for-H-2A < z <-H [Reg. 2] (45)

Vr U2 for-- < z <-H-2A [Reg. 3].

In oceanographic parlance, the depth to the thermocline is H, although N2 has been extended from
z = 0 to z = c, and the thermocline width is 2A. Three regions are distinguished in Eq. (45):
above, in, and below the thermocline. Hereafter, we shall let all distances be in units of A (i.e.,
set A = 1). This model is chosen by way of illustration and because the bound and continuum
eigenstates associated with Eqs. (28) and (43) are analytically known and simple [13]. There are
both even (g) and odd (u) eigenstates with respect to inversion symmetry about the center of the
well (at z = - H - 1). The odd states change sign under inversion, and the even states retain their
sign. The states are as follows:

Odd states

u(u)(z + H + 1),
where

u(U)(- z) =- u(U)(z)
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,(11)= {NZ N sin f3,,z for zj < I

I N,, sin /,B, exp[-k,,(z - I)] for z > I

U = fN 1 sin pz for zj < I
f Nk {sin p cos k(z - 1) + (p/k) cos p sin k(z - I)} for z > I

Even states

u(Y) (z + H + 1) where u(g)(-z) = u(g)(z)
u11(g)(z) = N,, cos fB,z for zI < I

N,, cos 3,, exp [-k,,(z - I)] for z > I

(,,)= TNk cos Pz for zj < I
() lNh {cos p COS k(z - I) - (p/k) sin p sin k(z - I)} for z > I

where

N,,2 = [I + k,-1]1

/3,, - V - k,,2

p-p( h) ) V- -+k (46)
N1-2-r'1 [ I + (V61k

2)cos 2 p]-I

,3,, cot 3,, =- k,, for odd states

,/,, tan /3,, = for even states.

The k,, values for the bound states are a function of the strength of the potential Va, as shown by
Fig. 3. As Ve increases steadily, more and more bound states appear. The nth bound state appears
when V6 reaches the value nir/2. Even states are associated with even values of n (n = 0, 2,
4, ...), and odd states are associated with odd values of n (n = 1, 3, 5, ...). It is easily shown from
Eq. (46) that

k,, nir/26 (n 3 I)

and

k= 62
V6= nir/2 + 6 (8 < < 1), (47)

which describes the behavior of k,, near the Vo value at which it appears.

The Particular Solution w,, - Point Source Below Thermocline (PSBT)

In Eq. (3 1), w,, is written as the sum of bound and continuum state contributions:

Wp(Z) = Wpb + WIC (48)

where w -i,,b is straightforwardly obtained as the sum of even- and odd-state terms. The factor
u,,,(z,) is evaluated from the solution in Eq. (46) that applies below the thermocline. This case

14
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0 5 10

Fig. 3 - Solutions for bound state eigenvalues as a function of the square-well potential strength

will illustrate the method, although results have also been obtained for the point source in and
above the thermocline. Accordingly, we let

z, =-d, where d= A+ H +2, (49)

so that A represents the depth of the point source measured from the bottom of the thermocline.
The factor u,,(z) in Eq. (31) is evaluated for z above the thermocline, since we are interested in
the region near the surface of the ocean. Based on the bound state equations in Eq. (46), the
result is

Wp b = ME An K ~ 2-2exp[-k,,(z + H + A)],ZI4JbM~AKo2 - k,,2 (50)

where

A,, = ± k,, ( k,,2
1 + k,, ( l ~T )

(+ for even states)
(- for odd states)

1 5
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From Eqs. (34) and (44),

K6(K) = eK2 -Vr. (51)

Similarly, one obtains

WpC = M f dk k2 + K 2 Nk2 {F+ F +F 3 } - h)C+if+i

where

F1 sin 2p cos k (z + H + A)
F2 -(plk) cos 2p sin k (z + H) cos kA (52)
F3 -(kip) cos 2p cos k (z + H) sin kA.

Here, W1Jci is associated with the Fj term (i = 1, 2, 3).

The above expression for zJC can be evaluated by using contour integration techniques
and the Residue Theorem, similarly as demonstrated for the homogeneous fluid case in Appendix
A. This density-stratified case is clearly a more complicated situation, but not as much as it
initially appears. For example, since the integrand is an even function of p, no branch cut on the
imaginary k axis from k = 0 to k = i\Io is called for. The poles that need to be accounted for are
at k = _ iKo in the complex k plane and at the singularities of Nh 2. The latter are found to occur
on the imaginary axis, where k = io, and from Eq. (46);

N. 2 1 

7T a. 2 -VO cos2p( ia)

where

p(i-) = Vo-o-2 for a < V6

=i i -V 6 for a > Ve. (53)

There is always a root of the denominator at a- = Vo. For V5 < I there is another root at the
solution of

o\/i = cosh a2 -Ve (VV7< 1). (54)

For NV > I there are additional roots crj, which satisfy

To-/ V 6=c c V 6-os,-2 (VV > 1). (55)

The various roots of the denominator in Eq. (53) were calculated and are shown in Fig. 4 For
V 6 > I the roots o-j2 are indicated by + or - symbols. We shall henceforth denote the total

collection of a- roots shown in Fig. 4 by ki. Hence, for example, for NV < I there are a total
of two kj roots shown in Fig. 4 (1 = 1, 2).

16
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250 5 10 15 20
kj

Fig. 4 - Zeros of the denominator in Eq. (53) with o = kj as a function
of the square-well potential strength

1 7
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In the use of the residue theorem in the evaluation of Eq. (52), we shall need information
on the residues associated with the poles of Nk2 the complex k plane. We find that

lim (k-iki)N,. 2 = 1 k
k; 27ri 1 -Fjk'

where the factor Fj3 - F(k,) is given by

F(V 6) = Vofor the root kj = Vo (\/V J 1)
F(kj) = I for solution of Eq. (54) (\/a7 < I)
F(kj+) = ± sgn[sin p(ik;J)] (aVO > I) (56)

where

sgn [x] -+ I if x >0 (57)
- I if x < 0

For V6 = 1, the root kJ = \Io becomes a pole of order two which makes no contribution in the
residue theorem. V/e can take care of this by letting F(l) = a. In Appendix B the term wlZc is
evaluated for the sake of illustration.

The evaluation of Eq. (52) proceeds as in Appendix B, and the result is

W,,C/M = C(iKo)-uKO(A+z+H) + sgn (A - z - H) D(iKo)e-KOIA-Z-HI

X {Ce -kj(A+z+H) + sgn (A - z - H) Dje-kj!AzH1} (58)

where

CQik) = I 2Kp(iK) sin 2p(iK) + [K2 - p(iK )2 ] cos 2p(iK)
4 K2

- Vo cos2 p(iK)

- I 2kj p(ikj) sin 2p(ikj) + [kj2 - p(ik )2 ] cos 2p(ikj)i = -(K 6
2 -k 2)(l - Fjk,)

D(iK) = I Vo cos 2p(iK)
4 K 2

- V6 cos 2 p(iK) (59)

Dj = 1 V6 cos 2p(ikj)
F 4 (K6

2 - k,2)( I - Fjkj)

This completes the evaluation of ivJ)(z) in Eq. (48).

Full Solution w (PSBT)

To the particular solution just found we must add a solution of the homogeneous equation

iIz - W6 (z) Fv1, -K 6
2wii, = 0, (60)

in order to satisfy the boundary conditions, where Wo(z) is the square-well potential which is
zero outside and - Vo inside the well (see Eq. (43)). The solution is found by demanding continuity
of wit and wiiz across the square-well boundaries, along with the condition that Wu, vanishes at
z = - x. It is

1 8
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-Ae-2Ko [2 cos 2p(iKe) + K6o _ ) sin 2p(iKo)]eKoz (z >-H)
2 (p(iKo) [Reg. I]

+ ( iKo) K6 ,,) sin 2p(iK)eCKO(z+2H)M

-w,,(z=AeK(2+H) { sin [p(iKo)(2 + H + z)] (-2-H <z <-H)
Lp(iKo) [Reg. 2]

+ cos [p(iKo)(2 + H + z)] }

A eKoZ (z <-2-H)
[Reg. 3]

The form Ae-KOZ in (region) Reg. 3 is rejected as a possible solution because it does not vanish at
z = - for K which is to be regarded as displaced by a very small amount beneath the real K
axis (see footnote in Appendix B). The constant A is adjusted to satisfy the free-surface boundary
condition in Eq. (37), for which we need the Reg. I solution in Eq. (61). The details of this are
somewhat tedious but completely straightforward, and the full solution for the observation point
in Reg. I and the point source in Reg. 3 is

F (K o, 0, z)/ M A,, eKn2 -k,, 2 [e knz + (k,, + Ko sec2 6)

x F(iKo, z)] + C(iKe)e-K(H+A)

X [e -Koz + (K6 + K, sec2 6) F(iKa, z)]

- IJ Cj e-kj(H+A) [e-kjz + (kj + Ko sec2 0)

x F(iKo, z)] + D(iKo) [sgn (A - z - H)

X e-K -Z-HI - (Ko - sgn(A - H) K0 sec2 6)

X e-KIA-H I F(iKo, z)] -j DJ

X [sgn (A - z - H) e-kj-z-HI - (j-sgn (A - H)

x Ko seC2 6) e-kjlI-HI F(iKo, z)], (62)

where we have defined the subsidiary function

F(iK, z) [S(iK)] '[P(iK)eKz + Q(iK)e-K(z +2 H)],

with

P(iK) -2 cos 2p(iK) + [{K iK)] sin 2p (iK)

E 5p[ iKKI + ) s i
Q(iK) K K~)] sin 2p (iK) (63)

[p (iK) KI

S(iK) - (K - Ko seC2 6) P(iK) - (K + Ko sec2 6) Q(iK)e-2KH.
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The parameter A,, has already been defined in Eq. (50); C, C, D, and.D have been defined in Eq.
(59). Some care is in order to distinguish between Ke, defined in Eq. (51), and K0,, defined in Eq.
(27). One must also distinguish the bound state values k,, from the singular points kJ of the eigen-
function normalization parameters.

Expressions have also been found for the observation point in Reg. I and the point source in
Reg. I or Reg. 2. These are available upon request.

Evaluation of w (PSBT)

As indicated by Eqs. (38)-(42) contour integration techniques can be used to separate
localized and wavelike contributions from the point source. Of great interest are the positions of
the poles in the complex K plane. From Eq. (62) it is clear that there are poles associated with
the bound-state eigenvalues, and for the contours of interest (see Fig. 2) these occur at

K = K,, - k,, 2 + Ver (poles)

Poles of interest also occur at solutions of

S(iKe) = 0 (poles).

It might be thought that poles would also be associated with C, Cj, D, and Dj coefficients (see Eq.
(59)), but it is easily shown that the singularities of C are canceled by the singularities of the
C, coefficients, and similarly for D and Dj coefficients.

To advance further in the discussion, we would like to know how to analytically continue
w into the complex K plane, and, in particular, to various parts of the contours shown in Fig. 2.
The central part of this problem is the analytic continuation of p(iKO) and K6 which appear in the
arguments of functions contained in Eq. (62). These entities can be written from their definitions
in Eqs. (46) and (51) as

K6 = K2
- VeT

p(iKe)- V eVo+ Ver-K 2 _ i K2 <-(Ve+ Vor) .

The generic problem is the analytic continuation of a function

f(z) z--a' (z = x + iy)

in the complex z plane. Here a is real. This is handled in various texts [ 14] and in Appendix C.
The results of Appendix C are straightforwardly applied to K6 and p(iKo) and the functions in
which they appear as arguments.

We return now to the condition (see Eq. (63)) that

S(iKe) = 0 = [P(iKo) - Q(iKo)e 2-KH]Ko - [P(iKo) + Q(iKo)e-2 KeH]K, sec2 0. (64)

20
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Its homogeneous fluid counterpart solution corresponds to the pole at K = K(, sec2 0 which gives
rise to the Kelvin wake [2], where Ko = g/U2 if surface tension is ignored. If we hypothesize a
solution near this value for our case, we find without too much trouble that, since rr

g > > N2 -K( sec2 0 > > Ve, Ver

(where g is expressed in units of A/sec2 ), we have

P(iKo) = 2e2K and Q(iKe) = 0.

Then K = Ko sec2 0 is a solution of Eq. (64) to a very good approximation. The assumption that
the surface tension part of Ko in Eq. (27) can be ignored could be argued as follows. It is well
known that surface tension is comparable with gravity effects only when the wavelength (= 27r/K)
gets to be around a few centimeters. But the disturbance should be concentrated mainly in
wavelengths on the order of the hull characteristic length or depth, whichever is larger. These
wavelengths are much larger than a few centimeters, so that the surface tension correction in
Eq. (27) is relatively negligible. The detailed effects of surface tension are, however, relatively
unknown. Their most dramatic effect appears to be in the solution of Eq. (64), which can be
rewritten to a good approximation as

K - Ko sec 2 6 = 0, (65)

where Ko is given by Eq. (27). Since K), is a function of K now, the solution of Eq. (65) is easily
found to be

K = K+ and K_ (poles),

where

K+ = PU2 COS2 0 + /p 2U4 cos p 0 g-P
2T V4T 2 co TO T (66)

p = I gm/cm 3

g = 980 cm/sec2

and

T - 72.5 erg/cm2 .

For the first term under the radical sign dominant over the second,

Ki - PU 2 cos2 6;
T

K_ = g sec 2 6.
U2 (67)

Under these circumstances K+ corresponds to the surface-tension effects and K_ corresponds
to the gravity effects, so that neglect of surface tension corresponds to throwing out K+ and
keeping K_ in the approximation of Eq. (67). Significant surface-tension effects occur when the
two terms under the radical in Eq. (66) cancel. As a consequence,

Here,
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pU2

K+= 2T cos26

when

c I (4T9) I
(68)

A larger portion of the 0 integration is involved in this condition for smaller velocities. For
example, when U = 20 knots, 6 = 88.70 in Eq. (68), but when U = I knot, 6 = 63.30. Evidently,
then, smaller velocities lead to more prominent surface-tension effects. In the expressions we
shall derive, we shall neglect surface-tension effects, for simplicity and in accordance with
precedent. This corresponds to letting T 0 in Eq. (27), so that K)) is simply a constant parameter.
Surface-tension effects can be included at some future time, perhaps with the help of the above
considerations.

We are in a position now to write down the expressions for w in Eq. (39), using the discussion
of Eqs. (38)-(42) as a guide. We have

I 7r2 + 8
w = (2iiT) -2 (-f

- 7/ 2

- W(b) + W(a)

dO + di) J dK KW(Ko, 6, z)eiKW + c.c.
-n/

2
+8 

(69)

where w(b) is evaluated with the use of the contour in Fig. 2b and w(") is evaluated with the use
of the contour in Fig. 2a. Schematically,

w(b)= f dK ..

where

f-o-2+8
Wl(b) = - (27r)-2

ir/2
dO f

0

On the other hand,

=- IIdK.W(a) = f dK .. .
c,

-f dK .. . + [27riW(poles)] + c.c.

= -f dK . . .=(b)

dm m W(- i Vm + V6T, 0, z)em 1 + c.c. (70)

22

+ W, + W,
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w(a) = - (2ir)-2 J dO J dm m W(iVm2 + V6T, 0, z)e--w + c.c.
-7T/2+8 0

/v2 rv 0
Ws = (2 7r)-2 J dOJ

_7T/22+8 0

dK K[W(-- i V - K 2,, z)-W T 2 , , z)]

X eiKw + c.C.

Wr = - 71f1r dO Im[YM( kE,,2 + V6T) + ,(Ko sec2 6)].

Here W(K,,) is the residue of the integrand KW(KC, 0, z)exp(iKco) at the pole at K = K,,. These
expressions are straightforwardly found from Eq. (62):

W = WB + WC,

where

WB = WBI + WBs + WBT

WC = W(f + WCs + WCr

(72)

This separates w(R, 8, z) into bound state B and continuum state C contributions, and the latter
are, in turn, subdivided into localized Q, stratification s, and residue r contributions as in Eqs.
(70) and (71). Before we give these expressions in detail it will be convenient to define

F'(m, z) - Re F(m, z) and F"(m, z) - Im F(m, z), (73a)

where, from Eq. (63),

Ko sec f2 p 2 +m 2 \
F'(m, z) SS* [cos2 2p + 2 + 2 s 2pCos mZ

-2(P 2- !)2 sin2 2p cos m(z + 2H)-4( P- -)sin 2p cos 2p sin m(z + 2H)}

+ -~S- {4 cos 2 2p + 2(--+- )sin 2 2p sin mz
m [ (ps 2 m 2) -

+ 2 P- M sin2 2p sin m(z + 2H) - 4P _ p sin 2p cos 2p cos m(z + 2H)}

F"(m, z) = (I/SS*) (4Ko seC2 0 sin mz + 4m cos mz),

where

231 2

r-

M:

(71)

(73b)
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where

SS* - S(m) S(m)*

= K0
2 sec4 6 [4 cos2 2p + 2(-- + L)sin' 2p - 2( - 2)sin22p cos 2mH

- 4p- _)sin 2p cos 2p sin 2mH]

+ m2 [4cos2 2p + 2( -+ .)sin2 2p + 2(p-2- _ sin2 2 p cos 2mH

+ 4 _-)sin 2p cos 2p sin 2mH]

- 4mKo seC2 0 [(P2 - 2)sin2 2p sin 2mH

-2 P- _-sin 2p cos 2p cos 2mH].

Here, from Eq. (46),

p p(m)= m2 +VO

By changing variables to O' = 0 + 7T in Eq. (70), we find that

M .s/2+8 A _c ,,e-kn(H+A)
WBI) = 2J dO W 2 J dme m 22

2 nf/2+8 0 O+k, 

where

{ I = e-knz + Ko sec2 0 F'(mo, z),

with

m ` - + VeT.

Similarly,

M f7r/2+8 x
W(= 2 - J dO f' dme?0m fm{Re C( ) - j Re CAj( ) + Re D( ) - Xj Re D.(

2T2-in/2+8 )

(73c)

(73d)

(74)

(75)

(76a)

24
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Here, from Eqs. (59) and (62),

ReQC )='C'cosme(A+H+z)-C"sinmo(A+H+z)

+ (C'F' - C"F") [cos me(A + H)Ko sec2 0 + me sin me(A + H)]

+ (C'F" + C"F') [me cos mo(A + H) - sin me(A + H)Ko sec2 0] . (76b)

In Eq. (76b),

I (mO2 + p2 )cOs 2p
C' -Re C(-ime) = 4 me2 + Vo COs2 p

I mop sin 2 p
C" _ I m C(-ime) = 2 me2 + V6 cos2 p

Re Cj( ) = Cje-kj(A+H)[e-kjz + (kj + Ko sec2 6)F'],

where

C _ I (2k j2 -Vo)cos 2p(ikj) + 2kjp(ikj)sin 2p(ikj) (76c)
- 4 (me2 + kj2) (I - Fjkj)

Re D( ) =D{sgn(A-z-H)cos meIA-z-HI
+ F'[sgn(A - H)K, sec2 0 cos moIA - HI - me sin mlA - HI ]

- F"[sgn(A - H)Ko sec2 0 sin mojA- HI + me cos mIA - HI ]} (76d)

where

D = D(- ime) Vo- os 2p4 me2 + V0 cos2 p

Re Dj( )= Dj{sgn(A-z-H)e-kjl-z-HI

- [k - sgn(A -H)K,, sec2 O]ee-AjAHIFT}, (76e)

where

D - I Ve cos 2p(ikj)
4 (mo 2 + kj 2) (I -Fjki)'

and we have used the abbreviations

p -p(mo), F' -F'(me, z), F" = F"(me, z).

25
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It is also straightforward (and tedious) to find the stratification terms. The result is

M c/~2
f Vr

W",s = - 72 J dO K,, sec 2 0 J dK sin Kxo KF"( V6 r - K2, Z),,{ }n, (77)

where

{ } ,, = A,, e-kn(H+A)l(Ke2 -k 2),

and

M fin12 f\
t =c _ M dO J dK sin Kw K{C'[ ]-C [ ] - j ] + D[ ] -Y,j ,j

(78a)

Here,

C'[ ]=C'{sin/VeT~K 2(A+H+z)+cos' 5Ve~K 2 (A+H)[Kosec2 OF Ve- K2F']

+ sin V TK(A + H) [Ko seC2 0 F' + "VeTKF] } (78b)

where

C' - Re C- i V6
T - K2) = (2K0

2
- Vo)cos 2p( VT- K2)/{4 [KO2 - VOcos2 p( VT- K 2)] };

C"[ ] = C"{cos V6
T-K 2 (A+H+z)+cosV 6

T-K 2 (A+H) [Ko sec2 0 F'+ VeT K 2F"]

-sin nVTK2 (A + H) [K,, se 2 0 F "- VT K 2 '] }, (78c)

where

C" -- Im C(- i VTo K2) = V TV- K2 p( V6
T- K2) sin 2p(TVo T - K2)/

{ 2 [KO2 - V cos2 p( V K 2)] }; C [ ] = Cj e-'j(A+H) (kj + K( sec2 ) F", (78d)

where

Cj = [(2k, 2 -Vo) cos 2p(ikj))+2kj p(ikj) sin 2p(ikj)]/[4(Ke 2 -kj 2 )(l -Fjk j)]

D[ ] = DI sgn(A-z-H) sin VT-K 2 IAzHI + F"[sgn(A-H) Ko sec2 O cos /VeTK

IA-H V|o- Ksin V16T 2-IIAHI +F' [ VoTK 2 cos V6T-K 2

jA-HI + sgn (A-H)Ko se2 f sin V-TK2IA-HI ]},

where

D = V cos 2p (VoTK e2)/{4[K 2-V6 cos2 p( VTK)] }; (78e)

D, [ ] = Dj [kj-sgn (A-H) K,, sec2 6] e-hj A-HI F", (78f)

where

Dj = Vo cos 2p(ik.)/ [4(Ko2- k,2)( 1-Fjkj)]
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we have used the abbreviations

F' - F'(V V-TK 2 , z),

(78g)F" =oF"( V0 T..K2, z),

p(V Vr K2) = V 6+ V I'-K2.

The residue terms are found to be

IM fr/2

7r ,,

dO Y ,A,,ekn(H+A){ },

where

{ } 9 2 sin Vk, 2 + V0
T co[e-knz + K)) sec2

0 F(ik,,)]

+ sin(Ko seC2
0 co) e(Ko Sec

2
0)z (79)

wcr = - M' d6 Ko sec2 0 sin(KO sec2 0 I) {C[ ] - JCj[ ] -D[ ] + Y .Dj [
7- _nI2+8I

]}.

(80a)

Here,

C[ ] = Ce-Ko sec
2

O(A+H) 2Ko sec 2
0 e(Ko sec

2
O)z

where

C = C(iKo sec2 6) = 4
4

2K 02 sec4
0 e-2Ko seC2 0 + I ( sec 6) sinh(2Ko sec2 0)

Ko,2 sec 4
0 - Vo cosh 2 (Ko sec 2 0)

(80b)

C3 [ ] = Cie kj(±+H) (kj + Ko seC 2 6) e(Ko sec2
O)z

where

C3 - 1 2kjp(ik,) sin 2p(iki) + [kj2 - p(ikj)2 ] cos 2p(ikj)
4 (K,2 sec4 0 - kAc2) ( I- Fjkj) 

D[ ] = D K)) sec 2 0[1 - sgn(A - H)] eKo Sec2 OiA-Hle(Ko sec2 0)z

D = D(iKo sec2 0) = 1 V0 cosh (2Ko sec2 0)
4 K,,2 sec4

0 - Vo cosh 2 (Ko sec 2 0) '

and

Dj[ ] = DP [kj - sgn(A - H)K,, sec2 0] e-kj IA-HI e(Ko sec 2 0)z

where

(80c)

(80d)
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where

Expressions for the point source in the thermocline are available upon request. We have discussed
the effect of surface tension on w,U. The effect on wU' and w, is included simply by substituting

Eq. (27) for Ko(K), with K = - imo in wland K = - i V0
T- JC2 in w5.

Surface Displacement 4 (PSBT)

From Eq. (14) one obtains surface displacement by evaluating (undisplaced surface level at

z = 0)

(= U-' dx w(xyz)z,,_. (RI)

This is very simply done from Eqs. (72)-(80), and if we denote

F(m) g F(m, z)l=o- F'(m) + iF"(m)

in Eq. (73), the results are

-e =- M fi 2+8 dO sec 0 J dm e- -- [ I + Ko, sec2 0 F'(me)]Y,,{
2 TU- nlf±b

},,,

where

{ I}, = A,,e kn(H+A)/(mO2 + k,, 2); (83)

(82)

M [-/ 2+±

(c' =- 2Tu J2+

M fn/2
-IU/2±8

fM r/2
c = Al i2U ±

8dO sec 0f dm e-mw{Re C )-1i Re C( ) + Re D( )-Xj Re D( )};

K1/_
dO K,, sec 3 0 f dK cos (K~o)"( VeT r- K~2 1,,A,,e-k,,(H+A~)/(KO

2 - Ac,,2 );

4)

(85)

dO sec 6f '6 T

0

(86)

~Br = M fin/2

ITU -sn/2 +8
dO sec 0 ,,A,,e-k,,(H+A) {

D = I V0 cos 2p(ikj)
4 (K,,2 seC4 0 - kj 2 ) (I - Fjkj) (80e)
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4-i

I
{ I} cos ( k~,,2 + V0

T, (o) [ I + K, sec
2 O F(ik,,)]

2VAc,, 2 + VFOT

+ (Ko sec 2 6)-i cos (K(, sec 2 0 co); (87)
and

4Cr r f dO sec 0 cos (Ko sec2 0 &j) {C[ ] - YC [

-D[ ]+TjDj[ ]}, (88)

in which the parameters are exactly those listed for the w counterparts in the evaluation of w.
They are to be evaluated at z = 0, which is a very simple task.

Surface Rate of Strain S (PSBT)

From Eq. (9) one can define

s_ - a - -= + IzIo (sect),
az __ lax ay]i __ (89)

so that the parameter S is considered to be a measure of the rate of straining of the surface. The
z partial differentiation is easily applied to the expressions for w, and so the counterpart expres-
sions for S involve the function

G(m) -a F(m, z)|, 0o = G'(m) +i G"(m).
az

(90)

We need not explicitly list G'(m) and G"(m), since they are very easily obtained from Eq. (73).
The results for S are

Sse = -z M dO J dm e-mw myn{ },,,
-,n/2+C8 0

where

{ I. = A,,e- 'n(H+A) [- k,, + Ko sec2 0 G'(mO)];
(MO (m 2 + Ac,,2)

(91)

Sc'e=2Mf7J dO dm e m-a{ReC( )- j ReCj( )+RcD( )-Xj ReDi( )};
2 7T2 -mn/2+5 ( az

(92)

dO K)) sec2 0 f
0

A sin - k,(H A)
dK sin (Kwo) K G"( VeT - K 2 ) J, Ko0

2 k , 2 (9 3)

where

JM f/2



M. H. REILLY

and

Sr, = f d6 f dK sin (K,) K {C'[ I - C"[ ] - YjCj[ ] + D[ ]-jDj[ }.
.2 jjaz

7r _/2±0 0
(94)

As in Eq. (92), the z partial differentiation is performed (very easily), and then the result is eval-

uated for z = 0. The residue terms are

M f r/2 -sin (A,, 2 + VTr o) [- k,, + Ko seC2 0 G(ik,,)]
S,,. =- J dO Y,,A,,e-kn,(H+ ) 2 (95)

-7/12+8 + K0, sec 2 0 sin (K0, sec 2 0 so)

and

M f7/ 2 a
Scr. dO Ko sec2 0 sin (Ko, sec2 6 o) - {C[ ] -j ] -j D[ ] + -jD[ ]}.

7T 2baz

(96)

Again, the coefficients are easily obtained from the counterpart expressions for w, and so do not

need to be explicitly listed.

Effect of the Rigid-Lid Condition

As mentioned in the Introduction, the rigid-lid boundary condition is the basis of most internal

wave calculations. It is that the surface displacement 4 and hence the velocity component w

vanish at z = 0. One operating definition of internal wave effects, in fact, is that these are the

effects in a free-surface boundary condition calculation which survive the imposition of a rigid-

lid boundary condition. From Eq. (27), for example, it is seen that internal wave effects can be
extracted by simply taking the limit

K(, x (rigid-lid boundary condition) (97)

in the previous expressions. Of course, surface displacement and Wj1z = 0 vanish in this limit,

but strain rate S does not. The limit in Eq. (97) also has the effect of moving the pole at K = K(

sec2 0 on the real axis out to infinity, so that this pole gives no contribution-hence, no Kelvin

wake [2]. These conditions and the limiting homogeneous fluid case[2] are useful checks on

the above expressions.

NUMERICAL CALCULATIONS FOR LOCALIZED SURFACE DISTURBANCE

INDUCED BY A RANKINE OVOID

In this section numerical computations are performed for an isolated contribution from a
hull, viz, the localized surface displacement 4, and rate of strain SI induced by the hull when

it is below the thermocline. We shall see that the hull can be simulated by a point source and

point sink of specified strength, separated by a specified distance. Then we have a superposition
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of contributions from each of these two (source and sink), which are given by Eqs. (83), (84),
(91), and (92) in our calculations later on in this section.

Simulation of the Ovoid

We describe the hull simply as a Rankine ovoid which is simulaf -d by a point sink and point
source. This is essentially identical to Yim's procedure [2] for the hull. It is explained in fluid
mechanics texts [ 15], and we shall just give the bottom line here.

Shown in Fig. 5 is a slice through the center of the ovoid in the xz plane. The ovoid (hull)
is a body of revolution about the x axis traveling in the negative x direction with speed U. Its
length is 21 and its width is 2h in Fig. 5. The distance from its center to the point source (toward
front of ovoid) or sink (toward rear of ovoid) is a. The strength of the point source is M, as defined
in Eq. (9), and the point sink can be regarded as a point source of strength -M. The values of

- U

(-Q,0,0} I

M (-a,0,0)

(0,0,h)

- (Q,0,0)

(0-M ,-,0,

(0,0,-h)

Fig. 5 - Coordinate diagram for hull simulation in an
incompressible fluid moving with velocity U

3 1
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M and a are adjusted to the half-length 2 and half-width h parameters of the hull through the
equations

M= (7Th2U /a) 2 +a 2 (98)

where a is found as a solution of

f(x) = X2 - 22x + 24 - h22\h 2+ X = 0, (99)

where

x - a2 .

A numerical solution of Eq. (99) consists of stepping x from 0 to V2 in preset increments and

finding where f(x) changes sign. At this point the solution x is zeroed in on through use of the
Newton-Raphson method. The solution a is then used in Eq. (98) to find M. In Table I are given

solutions for a for several h and 2 ovoid parameters. Our calculations below will be for a partic-
ular choice of ovoid parameters. Our canonical Rankine ovoid will have a length of 100 m (I =
50 m) and a width of 10 m (h/2 = 0.1). For these parameters we compute a = 47.49 m and MA=

78.97 m2 X U. The ovoid dimensions we use are very close to those used by Yim. Our computa-
tions for these parameters have utilized homogeneous fluid techniques, but the corrections for
density stratification are minor and unimportant in this case. Certainly much more serious approx-
imations are inherent in the model B-V profile used below.

Table I - Solutions for the Source-Sink
Separation Parameter a for Various Rankine

Ovoid h./ Ratios

Length in Meters
h/2t 25 37.5 50 62.5 75

0.05 24.37 36.56 48.75 60.94 73.12
0.10 23.75 35.62 47.49 59.37 71.24
0.15 23.11 34.67 46.23 57.79 69.34
0.20 22.47 33.7 1 44.95 56.18 67.42
0.25 21.82 32.73 43.64 54.55 65.46
0.30 21.15 3 1.73 42.30 52.88 63.45
0.35 20.46 30.69 40.92 51.15 61.38
0.40 19.74 29.61 39.49 49.36 59.23

t Length I is in meters and h is contained in the ratio h/i. See
Eq. (99) in text.

Use of Symmetries

With regard to coordinate axes shown in Fig. 1, it is perfectly clear that there must be sym-
metry under a reflection on the surface through the x axis, i.e.,

O(x,-y) = Ox, y) and S(x,-y) = S(x, y).
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With respect to coordinates defined in Eq. (38),

((R, 27T - 8) = ((R, 8) and S(R, 27r - 8) = S(R, 8),

so that we can restrict our attention to 0 - 8 - 7r. We shall specify now that ((R, 8) and S(R, 8)
represent contributions from a single point source, but the statement in Eq. (100) applies to any
axisymmetric distribution of point sources and sinks. From Eqs. (831, (84), (91), and (92) we see
that C,(R, 8) and S,(R, 8) can be written in the forms

1/2 +5

S,(R, 8) = f 2

R fT/2 + 8

dOf(cos(6 - 8)) g, (cos 6) sec 0

dOf(cos(6 -8)) g,'(cos 6)

where g, and g,.' are even functions of cos 0.

Hence, for example, C(R, 8) can be manipulated as follows:

r T/2
(,(R, 8) dO f(cos 0) g, cos(6 + 8) sec(6 + 8)

0 -0+8 -,,/2

rf ,/2

Also, 0 -- 0 -ir/2

dO f(cos 0) g,. cos(O - 8) sec(O - 8) [cf. Eq. (100)]

(l(R, 7r -8) = f dO f(cos 0) g, cos(6 + 8- 7r) sec(O + 8- 7r)

= - J dO f(cos 0) g, cos(6 + 8) sec(O + 8).
-Frl2

By such manipulations, we find that

and S,(R, 7r - 8) = S,(R, 8), (102)

which means that we can restrict our attention to 0 S 8 - ir/2 in calculations of the localized
surface disturbance due to a point source. The symmetry relation of Eq. (102) does not apply
to stratification and residue contributions. In Eq. (101), it is seen that for the special case 8 = 0
the 0 integration actually needs to be carried out only between 0 = 0 and 0 = 7r/2.

We can also develop symmetry relations, based on Eq. (102), for the total localized surface
disturbance from the hull, which is simulated by a point source and a point sink. The appropriate
coordinate system is shown in Fig. 6. If we denote, for example, 1(/h)(R, 8) as the total surface
displacement due to the hull with respect to the origin of coordinates indicated in Fig. 6, and if we
denotel,(R,, 8) as the contribution of the point source of strength M, then

;,e")(R, 8) -= ,()(P) = ( 1(R,, 8a) -( ,(R2, 82).
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N
/ Hi

M

P

-M

Fig. 6 - Coordinate system for calculation of surface disturbance

due to the hull. P is the field point under consideration, and P is a
conjugate point at the reflection of P through the y axis. The source
and sink surface projection points are shown on the x axis symmetri-
cally placed about the origin of coordinates.

With respect to Fig. 6, we have from Eq. (102)

OU R, vT- 8) -- 1 () )(P') = Zi(R2, v- 82)-_ ((Ri, 7T- 8,)=- z(R2,82)+ Zi(Ri, 8a) =(l(h)

With these manipulations we have deduced a symmetry relation for g1(h)(R, 8). Exactly analo-
gously, a symmetry relation for S/(h)(R, 8), the total localized rate of strain due to the hull, can
be deduced. The results are

Uh)(R. w - 8) = (z(h)(R, 8), Sl(h)(R, V - 8) =Sl(h)(R, 8). (104)

Equation (100) also applies here, so that we may restrict our attention to 0 - 8 - 7r/2 in the cal-
culations of localized surface disturbance due to the hull.

Numerical Procedure

A computer program was written to evaluate 1(h) (R, 8) and Sl(h)(R, 8) over the surface, using
the notation of the preceding section. The procedure was to calculate the localized disturbance
in Eqs. (81) and (96) over a surface mesh for a single point source, and then to combine point-
source and point-sink contributions according to the geometry of Fig. 6 in a parabolic interpolation
scheme (see, e.g., Eq. (103)). The program is very complicated, including a variety of interpolation
and iterative schemes to take care of various practical difficulties which arise. At its heart, how-
ever, the approach can be described quite simply. The basic form of the point source expressions
is as follows:

Ml emfC7 07(l± 8 sc(+2)
-r' = 2 U 2 dO sec(6 + 8) dm eniR cos 0 F(MO+6, sec'(0 + a))

-27r
2 f-/2J, (105)

S= 2M f dO K)) sec 2 (0 + 8) |dm e- "R cos 0 m W(mo 8, sec 2 (O + 8)),
2 77-2 7r2 0~
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where me is given by Eq. (75). The technique used is to evaluate the m integration by special A
integration formulae, developed from a technique which we shall refer to as Filon's method ,
[17]. This gives an integrand value for a given 0 mesh point. The 0 integration is handled by
Simpson's rule. The discussion of Filon's method, along with a description of the formulae C:
needed in the evaluation of Eq. (105), is given in Appendix D.

In Filon's method one separates the integrand into two factors, so that the integral has the
form

rb

G(a, b) = F(x) ftx) dx. (106)

The factor F(x) is chosen to be analytically integrable; i.e., the integral in Eq. (106) could be
evaluated in closed form if f(x) were replaced by unity. As Appendix D shows, the power of this
technique is that the numerical evaluation of G now requires a choice of mesh with subinterval
width h only small enough that f(x) can be adequately approximated by a Taylor expansion to
second order about the center of an adjacent pair of subintervals. Put more concisely, we need
h small enough so that f can be fitted by a parabola in an adjacent pair of subintervals. This
can be an immense practical simplification over a brute-force application of Simpson's rule (which
is a special case of Filon's method for F(x) = 1) if F(x) is rapidly varying compared tof(x). In this
case the time-consuming evaluation of the integrand need be carried out at far fewer mesh points
(larger h) than in Simpson's rule, which would require a more finer grid of points. For example,
in Eq. (105), the exponential factor is rapidly varying in the far field, so that the choice

F(t)(m) = e-mR cos 0, (107)

associated with Eq. (106), is made for at least a portion of the m integration. A further simplifica-
tion occurs when m > > VeT, V0 . In this case, continuum contributions dominate, and they
are given by (see Eq. (105))

m cos md - (Ko sec2 6) sin md
Y;(m, sec2 6) = m m2 + K 2 se 4 = seC2 6). (108)

Actually, the asymptotic approximation used in the computer program also includes an associated
approximation for bound states and for the one normalization root term which occurs when Ve < I.
The point we make here is that when the asymptotic approximation is sufficiently accurate
(e.g., within 3%), we use it and resort to a further application of Filon's method for continuum
states based on Eq. (108). We use both

F(2) (m) = e-mR CoS 0 cos md

and

F(3) (m) -e- m R
CoS 0 sin md. (109)

Actually, there are situations when V7 is comparable to m even though m > > \/JO and we
must heed the prescription of Eq. (105) which dictates that we replace m in Eq. (108) by me.
Filon's method has been extended to encompass this case too, as described in Appendix D.
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It is quite clear from Eqs. (105) and (108) that the m integration is very slowly convergent,
especially when R is not too large, or 0 is sufficiently close to the upper or lower limits of its
integration. In fact, when the exponent in Eq. (105) vanishes, our basic contour integration
techniques are apparently not valid, since the convergence in the exponential was assumed. We
developed a linear interpolation or extrapolation scheme to handle these points, but this is of no
major importance in the present discussion. The point is that the slow convergence in the m
integration is what motivated us to make full use of Filon's method-e.g., with the help of asymp-
totic approximations. The m integral in Eq. (105) was computed in groups of six subintervals at
a time. In each of these groups the subinterval width h was computed. When we were not in the
asymptotic region, h was computed iteratively in a doubling scheme so that the changes of the
most rapidly varying phases in the trigonometric functions in f(x) over a subinterval h in the
group did not exceed a certain value (e.g., 0.5). The maximum such h for each successive group
was determined this way and used. When it was determined that the asymptotic approximation
was valid, FP2 ) and FP3) in Eq. (109) were also used and the residualffunctions were simple enough
that h was calculated analytically as the minimum value of

h= 0.5 IfI(dfldm))I

in the subgroup distilled from the various residual f functions of Eq. (106) associated with F(t),
FP2), and FW. In this way the m integration was performed relatively quickly.

The 0 integration was performed by dividing up the range [0, 7T] into 100 subintervals and
applying Simpson's rule. Some experimentation with the variable change from 0 to u, where

u = tan 0, (110)

was carried out, which lessens the impact of the singularities at 6=+ 7i/2 in Eq. (105), but the
results are inconclusive at this writing. It appears that this transformation [2] is also advantageous
for evaluation of the residue and stratification contributions, but this is a subject for future in-
vestigations. We shall discuss the results of the numerical procedure in the next part.

Results for Rankine Ovoid Model

The numerical computation of ( 1(h)(R, 8) and Sl(h)(R, 8) is carried out in this part, utilizing
the coordinate system shown in Fig. 6. The calculations are performed for a variety of density-
stratification models contained within the square-well description, which is embodied by Eqs.
(43)-(45). The B-V profile designations and parameters used are given in Table 2. The thermo-
cline profiles TI-T7 are obtained by fitting (graphically) various averaged, smoothed, seasonal
B-V profiles [16] in waters near the United States with our square-well model. An example of
this procedure is shown in Fig. 7 for winter and summer B-V profiles in Canadian Square Plate
1214 off the west coast. These correspond to the profiles TI and T2 in Table 2, respectively.
Beside TI, C2 can, for example, be taken as representative of winter conditions in some ocean
areas. The variety of profiles T2-T6 can be taken as representative of summer conditions in
the world oceans.

We first intended to show the pattern, never previously calculated, of localized surface
disturbance over a range of R and 8 values in Fig. 6 (O - 8 S 7r/2). This necessitates a rather
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Table 2 - B-V Profile Parameters Used in the Square-well Model
Calculations of Localized Surface Distrubance

B-V Profile H (m) A (m) No'2 X 10 (sec 2 ) N2
- No2 X 106 (sec 2 )

Designator

Ht 10 10 0

Cl 10 10 15 I

C2 10 10 80 I

C3 10 10 150 I
C4 10 10 250 I

CS 10 10 350 I

C6 10 10 450 I

C7 10 10 550 I

TI 45 40 64 44
T2 15 42.5 84 72
T3 5 22.5 100 205
T4 10 20 95 260
T5 10 35 80 280
T6 0 25 70 460

tThe mnemonic significance of the designators is H (homogeneous fluid),
fluids), andT (fluids with thermoclines).

C (constant-stratification

complete pattern for a single point source, followed by interpolation of these results in accordance
with Fig. 6. Furthermore, with all the possible combinations of speed, depth, and profile designa-
tor, it became clear that this would be a very costly project. We did carry it out, however, for one
depth (130 m) and speed (20 knots) for the H profile, and the results for a few of the 8 values
are shown in Figs. 8 and 9. The results indicate a surface depression centered over the center
of the hull (i.e., the Bernoulli Depression) and extending out almost one hull length in radius,
as far as e(h)(R, 8) is concerned. The rate-of-strain calculation in Fig. 9 indicates a blob of surface
contraction centered over the point sink in Figs. 5 and 6 and a blob of surface expansion centered
over the point source. The results which led to Figs. 8 and 9 took the better part of an hour to
compute on the CDC 3800, since a rather complete pattern of point-source disturbance is needed
as a preliminary. Put another way, while 8 is fixed, 8, and 82 are nevertheless varying as R changes
in Fig. 6 and in the computations. Figures 8 and 9 indicate that the expense is not only intolerable
but also unnecessary if we are interested in the order of magnitude of the maximum surface effect,
which seems to occur near the wake line (8 = 0). The main virtue of confining ourselves to the
wake line is that we need only the 8 = 0 R-dependence for the point source in a combination
interpolation scheme for the displaced point source and sink. The computing time saved is tremen-
dous. It takes only a few minutes now to compute a wake line R-dependence for the hull. This
has been computed previously for the surface displacement in a homogeneous fluid [2], but not
for the rate of strain.
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DEPTH (M)

Fig. 7 - Illustrative square-well fits to two smoothed B-V profiles
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Fig. 8 - Surface displacement pattern from the hull. Center of the hull is at R = 0 and one end of it is at R = 50 m.
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The wake-line R-dependence for the surface displacement, i.e., , 1(h)(R, 8 = 0), is shown
for various depths, speeds, and profiles in Figs. 10-21. Some profiles are missing for shallower
depths, but this is merely because our computer program does not apply for a given profile when
the point-source depth is no longer sufficient to place it beneath the thermocline. One thing of note
in Figs. 10-17 is that the various C profiles, regardless of the amount of density stratification
involved, yield surface displacements which do not differ appreciably from each other or from
the H profile case. Another feature obvious in Figs. 10-21 is that the presence of a square-well
thermocline in the T profiles can give a pronounced enhancement of surface displacement under
certain circumstances, particularly in the vicinity of the point source and sink, where a pro-
nounced surface displacement cusp apparently can occur. Some sort of resonance effect is
suggested. A summary of maximum calculated surface displacements is contained in Table 3 to
two significant figures.

Table 3 - Maximum Calculated Surface Displacements,
Given 41(h)(R, 8 = 0) x 102 ftt

Speed of 10 knots Speed of 20 knots

B-V Profile Depth (ft) Depth (ft)
Designator Misc. Misc.

_ (Displ./Depth) TDip1/De1h
500 400 300 200 500 400 300 200 (Displ./Depth)

H 2.7 4.9 10 24 12 23 48 110
Cl 2.8 5.1 10 24 12 23 49 110
C2 3.3 5.5 1 1 25 13 24 50 110
C3 3.4 5.9 1 1 26 13 24 50 110
C4 4.1 6.1 12 26 14 25 51 110

C5 3.9 6.7 12 27 15 26 51 120
C6 3.9 7.1 12 28 15 26 52 120
C7 4.5 6.8 13 28 15 27 53 120
TI 15 - - - 5.2/412 41 - - - 22/412

T2 4.3 5.7 - - 26/330 15 210 - - 77/330
T3 2.2 4.1 10 90 110/166 11 22 48 320 320/166
T4 1.9 4.1 9.8 260 51/166 11 22 47 990 200/166
T5 2.1 6.8 130 - 50/265 l l 27 500 - 150/265
T6 2.1 3.3 8.7 52 130/166 10 20 46 180 880/166

tTwo significant figures are used.

A perusal of Table 3 indicates that the thermocline in our model can have a pronounced effect
on the H (and C) profile results. It can surpress the displacement somewhat in many cases, perhaps
related to the fact that a fluid disturbance is partially reflected back down from the thermocline in
its upward motion to the surface. In this picture the thermocline behaves like an index discon-
tinuity in electromagnetism. On the other hand, in some cases substantial enhancement of surface
displacement occurs -by as much as an order of magnitude under special circumstances which
seem to be related to the parameters of the thermocline and the depth of the point source and sink.
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To see better what is going on we compute from Table 3 the ratio of maximum surface displace-
ment for the particular T profile to the same quantity for the H profile and substract unity from
it. This is a measure of the enhancement and we relate it to H, the depth to the top of the thermo-
cline, and A, the depth of the point source (or sink) beneath the bottom of the thermocline. The
results are given in Table 4, where the numbers give the fractional change from the homogeneous
fluid results. Actually, therefore, negative numbers indicate a displacement diminution, whereas
the positive numbers indicate a displacement enhancement. We see that the parameter A - H
is a very relevant one; the enhancements occur when it becomes sufficiently small. The so-called
resonance apparently occurs when it goes through zero. It seems to correspond to the increased
importance of the terms of Eqs. (76d) and (76e) in the integrals of Eqs. (84) and (92). These terms
give the effect of constructive wave interference due to the thermocline boundaries. They are
absent when there is no thermocline. The magnitude of their contribution is surprising when there
is a square-well thermocline.

The rate-of-strain wake-line dependence is shown for the H and C profiles in Figs. 22 and 23.
The same sort of effects occur here. There seems to be no appreciable dependence on the amount
of stratification in these profiles. The surface disturbance is again seen to increase with depth
and speed.

While the integrals did seem to converge numerically for the H and C profiles in the surface
rate-of-strain calculations, and did also for all the profiles in the surface displacement calculations,
they did not converge for the T-profile calculations of rate of strain. Consequently, nonsensical
rates of strain were calculated for the T profiles. The problem was that the contributions near the
end points of the 0 integration (0 = ± 7r/2) were inordinately large and unpredictable, and they
gave the principal contribution to the integral. The source of this problem is not clear at this
time, but some of the difficulties can be seen from Eqs. (105) and the fact from Eq. (108) that both
.Band 9 tend to the same bounded asymptotic form for me > > VG. The extra factor of m in
the integrand of St makes the asymptotic form mS' unbounded. This problem could be especially
severe as 0 - t 7r/2, since the exponential damping factor becomes ineffective in aiding the
m-integration convergence. The problem is especially heightened in this limit for the T profiles
because the condition mo > > Vo is increasingly difficult to realize, and without the asymptotic
form of Eq. (108), Filon's method can not be nearly as effectively utilized to speed up the m
integration. In addition, the extra factor of K0 sec2

0 in the integrand of Si in Eq. (105) magnifies
inaccuracies near the 0 = + 7r/2 limits. This motivated us to try the transformation of Eq. ( I10),
which appears promising because of the factor I + u2 introduced in the denominator, but the price
paid is an infinite upper limit in the u integration. We were not able to complete this in the time
frame allotted, so we chose another tack.

It was decided to attempt to estimate rate of strain from the calculated surface displacement.
We postulate that S is directly proportional to w at the surface, and therefore to a4/dx from Eq.
(14). The postulate is

S o-C a/ax' (111)

where C is a factor which may depend on speed, but, hopefully, not much on depth, thermocline
characteristics, or anything else. To test this hypothesis we tried it on the calculated surface
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Table 4 - Enhancement of Maximum Surface Displacement
by the Presence of a Thermocline

Displacement Enhancement
B-V Profile Depth A - H (T- aI/Hma)-1
Designator (ft) (m) 

10 knots 20 knots
I_______________ I____ I_ _ __i

Ti

T2

T3

T4

TS

T6

500
412

500
400
330

500
400
300
200
166

500
400
300
200
166

500
400
300
265

500
400
300
200
166

- 17.6
- 43

37.4
6.9

- 14.4

97.4
66.9
36.4
6.0

- 4.4

92.4
61.9
31.4

1.0
- 9.4

62.4
31.9
1.4

- 9.2

102.4
71.9
41.4
11.0
0.6

5

0.1

0.6
11

2

- 0.2
- 0.2

0
3

3

- 0.3
- 0.2
- 0.04

10
0.7

- 0.2
0.4

11

2

- 0.2
- 0.3
- 0.2

3

3

2
- 0.03

0.3
8
0.8

- 0.07
- 0.03

0
2

1

- 0.0
- 0.06

-0.02
8
0.2

- 0.06
0.2
9
0

- 0.2
-0.2

- 0.04
0.5
5
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rate of strain and displacement for the H and C profiles at four depths, for the two speeds, and for
two R values. These R values are 20m and the value of R = R.,(r at which the rate of strain is
maximum. The slopes of S are estimated from Figs. 10-17, and the Rma(lx values and appropriate
S values are obtained from Figs. 22 and 23. The results are indicated in Table 5. It is seen that
the values of C in Eq. (I 11) do not depend much on depth for a given R. They do depend on R and
the velocity U, but all the C values have the same order of magnitude. We are looking for the
order of magnitude of the maximum surface rates of strain for the T profiles. The results of Table
5 indicate that Eq. (I 11) will suffice for this purpose. We can perhaps gain a little more accuracy
by using two different constants for the two speeds. Table 5 suggests that we choose

C( 10 knots) 2.2 sec-' and C(20 knots) 1 . I sec-'. (112)

Piacsek's results for wake collapse [9] suggest a proportionality between horizontal surface
velocity and S of similar accuracy for various thermocline characteristics, so we are further
encouraged in this regard.

The maximum surface rates of strain are given in Table 6. These are calculated for the H
and C profiles and are estimated according to the method of the preceding paragraph for the
T profiles. Just as for the surface displacement, the rate of strain shows a dramatic "resonance"
enhancement over and above the H- and C-profile results as A - H approaches zero.

Table 5 - Values of C in the Postulated
Relationship S = -C(O41ax)t

Speed R Depth (ft)
(knots) Value 200 300 400 f 500

10 R,,,,, 2.8 2.2 2.1 0.81

20m 3.9 3.0 3.1 3.4

20 RCCCCX 0.93 1.5 1.2 1.1

20m 2.3 1.6 1.6 1.5

tC is in units of sec

Possible Effects of a More Realistic Model

Figure 7 shows that realistic smoothed B-V profiles do not have sharp thermocline bound-
aries, as in the square-well model we have used. The square-well model is known to overestimate
constructive wave interference effects in transmission problems, so it may well be that the sort
of resonance enhancement we have found for the surface disturbance as A - H approaches zero
would not be nearly as dramatic for a calculation on the more realistic smoothed B-V profile.
In addition, we have neglected current shear effects, which can be substantial, although the
maximum effect may not be changed drastically [9].

58



NRL REPORT 7942

Table 6 - Maximum Surface Rate of Strain, Given - Sl(h)(R, 6 = 0) x 104 in sec -I

By restricting attention to smoothed B-V profiles we have neglected considerations of
density microstructure. At any instant density variation with depth is not smooth. Indeed, there
are also density inhomnogeneities in the horizontal plane perpendicular to the depth direction.
Present indications are that density microstructure corresponds to a very spiky B-V profile with
a length scale of a few meters. The detailed effect of this is not presently clear, but it would
seem to act to prevent fluid disturbances from reaching the surface, and it would seem to further
legislate against the sort of resonance enhancement we have calculated. To what extent is a
subject for future investigations, but all the above considerations may make the H- and C-profile
results in tables 3 and 6 closer to the truth than some of the enhanced disturbances calculated
with the T profiles and the square-well1 model.

COMPARISON WITH PREVIOUS RIGID-LID CALCULATIONS OF
SURFACE DISTURBANCE INDUCED BY WAKE COLLAPSE

The wake collapse region shown in Fig. 1 has been regarded as contributing significantly to
the surface disturbance induced by a deeply submerged body. The relatively slow variation along
the wake direction and the gravitational origin of wake collapse in a stratified fluid has enabled

59 c:-.
:2 'Cl�
r-11

4�-'

S.-Speed of 10 knots Speed of 20 knots

B-V Profile
DesignatorDepth (ft) Misc. Depth (ft)Mic

500 400 300 200 (Rt. Str./Depth) 50403020(Rt. Str./Depth)

CALCULATED

H 0.25 0.54 1.6 6.0 0.62 1.3 4.0 14
CI 0.27 0.56 1.6 5.7 0.62 1.3 4.0 14
C2 0.27 0.55 1.6 5.7 0.62 1.3 4.0 14
C3 0.26 0.57 1.6 5.6 0.63 1.4 4.0 14
C4 0.28 0.58 1.6 5.7 0.62 1.4 4.0 14
CS 0.30 0.55 1.7 5.6 0.63 1.4 4.0 14
C6 0.23 0.64 1.6 5.8 0.64 1.4 4.0 14
C7 0.26 0.72 1.5 5.9 0.64 1.5 4.0 14

ESTIMATEDt

Ti 7.4 ---0.79/412 9.2 ---1.3/412
12 1.6 31 - - 13/330 1.9 59 - - 17/412
T3 0.22 0.42 1.1 75 85/166 0.48 1.1 3.4 39 130/166
T4 0.20 0.42 1.1 160 40/166 0.48 1.1 3.4 77 66/166
T5 0.18 3.0 80 - 25/265 0.48 3.4 41 - 41/265
T6 0.31 0.35 1.1 26 120/166 0.55 3.4 3.3 44 260/166

tSee text.



M. H. REILLY

a treatment different from the one we have given [4,6,8,9]. The fully expanded wake, just before
collapse, is treated as a mixed region of reduced density gradient, which represents the initial
condition in a solution of the Navier-Stokes (N-S) equations. The body does not otherwise
appear in the problem. Further, pressure variations along the wake direction are effectively
ignored, which enables the solution of the previous equations withouit this variable in the problem.
With respect to Fig. 1, the coordinates in the N-S equations are y, z, and t in an inertial reference
frame. This is the so-called 2d + t approximation. The body motion is included by the trans-
formation t - [t + (xlu)]. Finally, the surface boundary condition used in the solution of the
N-S equations is that the surface is undisplaced, which only correctly includes internal wave
effects, and which we have referred to as the rigid-lid boundary condition.

Piacsek [9] has performed a numerical solution of the N-S equations, which treats wake
collapse effects in the above procedure. He has utilized rather good analytic fits [10] to a wide
variety of smoothed B-V profiles [16] and a modified Gaussian model for the mixed region of the
fully expanded wake [18]. We have given a summary in Table 7 of his results, as we understand
them, which apply rather closely to the B-V frequency profiles on which we have made square-
well fits. Included in Table 7 are (a) our profile designator, (b) the Dugan parameters [101 (pi,
P2, p:,) which specify the analytic fit used by Piacsek, (c) the maximum surface value of aulax,
which corresponds quite closely to our rate of strain, (d) the distance behind the fully expanded
wake XiiC, at which the effect occurs for both U= 10 knots and U= 20 knots, and (e) the transverse
distance Y l, from the wake line at which the effect occurs. Two depths of the expanded wake
center have been considered-viz, 75 and 150m.

Table 7 - Data for Maximum Surface Strain Rates Induced by Wake Collapse

Dugan Lag Distance,

Depth B-V Profile Parameters 104 X (du/dx)C,,xCz XCmax, in km Yinax (m)
Designator in sec-.

P. Pa P3 U=10 U=20

75 m CI 1 6 6 8.3 34 68 60
= 246 ft TI 5 4 5 4.4 13 26 100

T2 3 3 3 6.8 13 25 80

T3 2 2 3 14 24 48 120

T4 2 1 4 8.4 24 48 180
T5 3 3 3 10 8 17 80

T6 2 1 3 7.5 26 52 210

150 m Cl 1 6 6 4.1 76 150 120
= 492 ft TI 5 4 5 2.1 50 100 300

T2 3 3 3 2.7 87 170 360
T3 2 2 3 2.5 200 400 380
T4 2 1 4 1.6 75 150 260
T5 3 3 3 4.1 58 115 360

T6 2 1 3 0.80 200 400 380

tValues are taken from Piacsek's calculations.
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Tables 6 and 7 reveal some interesting comparisons between the localized surface dis-
turbances induced by the hull and the extended internal wave effects at the surface induced by
wake collapse. If we disregard the T-profile surface disturbance enhancements in Table 6,s
surface rate-of-strain decreases with depth, roughly according to a d-3 dependence. The wake- c
collapse maximum strain rates in Table 7 appear to vary with depth at a slower rate. It appears
that the maximum localized hull contribution at higher speeds is somewhat larger down to about
250 ft, and the maximum wake collapse effects become larger for greater depths. Of course,
there is a major conceptual difference between the maximum local contribution of the hull and the
maximum contribution of wake collapse. Whereas the former occurs in the vicinity of the hull, the
latter occurs at very large distance behind the hull, depending on depth, the local B-V frequency
at depth, and other factors. Since damping effects are neglected in the calculations, Table 6
shows lag distances between the fully expanded wake position and the maximum surface rates
of strain of between 8 and 400 km. Considering these distances, the transverse displacement
of these surface disturbances from the wake line is quite small. Internal wave effects at the surface
have lag times of tens of minutes.

DISCUSSION

A straightforward method of solving for the disturbance induced by a point source in an
incompressible fluid with a free surface has been given in this work. In a real sense this is the
Green's function for the problem, and it is the foundation for calculating effects induced by a
submerged body, a region of turbulence, or any other perturbation on a static fluid in equilibrium.
As is customary, a two-dimensional Fourier transform (FT) was introduced to handle the situation
where the static fluid is density stratified along the depth coordinate, and the equations were
linearized. This made the calculation of fluid perturbation at sufficient distances from the point
source possible. Indeed, the FT of a fluid velocity component wi is seen to satisfy a wave equation,
or equivalently, a one-dimensional Schrodinger equation, where the negative of the square of the
B-V frequency plays the part of the depth-dependent potential.

An eigenfunction expansion for the infinite fluid problem was adduced and found to yield
a particular solution for iw in the presence of a point source in the region of interest in the fluid.
The straightforward evaluation of this expansion, with the further use of the residue theorem from
complex variable theory for the contribution of the continuum eigenstates, was found to be an
elegant and powerful method for the evaluation of the particular solution. This was demonstrated
in the wi solution for (a) the homogeneous fluid (Appendix A), (b) the constant-stratification fluid,
which involved a small extension of the homogeneous fluid results, and (c) the square-well model,
which enabled the addition of the thermocline region. The full solution for W was seen to involve
the addition of an appropriate solution of the associated homogeneous equation for the infinite
fluid (without the point source) whose size was adjusted to satisfy the free-surface boundary
condition.

The use of analytically soluble model B-V potentials in the Schrodinger equation for the fluid
is a technique which may be useful in future calculations. For example, the potential could be
modeled as a series of square-well potentials, histogram style, or it could be modeled as a series
of straight-line segments of appropriate slope to fit the B-V profile. These calculations would be
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more tedious, but certainly not insurmountable. In this way, one should obtain better fits to the
smoothed B-V profiles, but also these models may well be useful for investigation of density

microstructure effects.

Viscosity was initially used in the equations to account for causality effects and then was

dropped. It was seen to prescribe the treatment of singularities in the evaluation of the inverse

FT to obtain the spatial dependence of the fluid disturbance. Other ambiguities were also removed.

Contour integration techniques were then used to separate clearly the various contributions;

e.g., localized, wavelike, and background stratification contributions are visible as different

parts of the contour integration. The influence of surface tension was elaborated (pp. 25-34).

Its inclusion in a future calculation may well show interesting effects.

Detailed calculations were carried out for the localized surface disturbance from a submerged

Rankine ovoid, sometimes referred to as the Bernoulli depression. Several constant-stratification

models were used, as well as square-well model fits to several representative, smoothed B-V

profiles found in waters near the United States. The constant-stratification model results differed

very little from the homogeneous fluid results, despite the use, for at least one profile, of strati-

fication levels which greatly exceed those ordinarily found in realistic smoothed B-V profiles. On

the other hand, the model B-V profiles with square-well thermoclines gave surface disturbances

which differed substantially from the homogeneous fluid disturbances. In particular, a sort of

resonance enhancement in surface disturbance was observed when the depth of the hull (ovoid)

centerline beneath the bottom of the thermocline became comparable with the depth to the top of

the thermocline. While the sharp boundaries of the thermocline in the square-well model give

order-of-magnitude resonance enhancement of localized surface disturbance above the point

source and sink, used to simulate the Rankine ovoid, it is expected that the effects of considering

a more realistic fit to the smoothed B-V profile and including density microstructure will sub-

stantially reduce the magnitude of this enhancement effect. Nevertheless, this phenomenon

deserves further study.

A comparison was made of maximum localized surface rate of strain with previously cal-

culated maximum surface strain rates found from wake collapse. If the resonance enhancement

effect mentioned in the preceding paragraph is disregarded, it is found that the localized hull

disturbance dominates to a depth of about 200 to 300 ft, but that the wake collapse effects become

larger for greater depths. The two different effects occur at different parts of the surface, however,

with the localized disturbance in the vicinity of the hull and the internal wave effects from wake

collapse considerably to the rear of the hull by as much as tens of kilometers in many cases.

Because of the joint importance of localized and wavelike disturbances to a complete surface

pattern, future calculations should include both effects in realistic, model density environments,

preferably utilizing a free-surface boundary condition. This work gives a basis for doing this.

The point-source problem can be approached as in the above discussion. The hull can be handled

by superposition of the contributions from a displaced point source and point sink, as we have

done. The sail of a submarine has been simulated by a displaced line source and line sink [2].

It appears that the turbulent wake can be handled similarly [6,8]. The problem is to simulate

the streamline behavior near the turbulent wake boundary by a line-density distribution of point

sources and sinks. The source density along the wake line must vary to properly account for the
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turbulent wake in its growth and collapse stages. A suitably defined quadrupole density has been
previously mentioned elsewhere in this regard. An approach like this in principle goes beyond
the accuracy of a 2d + t approximation, which is often used in wake collapse calculations. 
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Appendix A
HOMOGENEOUS FLUID SOLUTION FOR w

The eigenvalue Eq. (28), using Eq. (30), is

u,, + k2u = 0 X u,. = (27r)-1/2 etikz, (Al)

and we must use both degenerate states in the eigenfunction expansion of Eq. (29). Hence, Eq.
(31) becomes (if x. = y. = 0)

M rx ik e ik(zzs) - ik eik(z-zs)
wP(K, z) =-J dk

0

27ri d (k + iK)(k-iK) eik(zza) (A2)

The contour may be closed by an infinitely large semicircle in the upper half-plane for z - Z9 > 0
and in the lower half-plane for z - z, < 0. By the residue th we obtain

iP, (K, z) =f (M/2) exp [-K(z - z,)]l for z - z{ > 0 (A3)
-(M/2) exp [ K(z - z,) J < O

The solution of the homogeneous Eq. (36) which satisfies Eq. (32) is

tiH(K, z) = A eKz, (A4)

and A is determined from Eq. (37). For simplicity we suppose z > z,, so that the free-surface
boundary condition at z = 0 becomes

A(K cos2 0-Ko) = (M/2) e Kzs(K cos2 0 + Ko). (A5)

The full solution for z > z, is

w(K, z) = wi, + tull = e-[K(z-z,) + K - K" sec2 0 eK(z+zS). (A6)
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Appendix B

EVALUATION OF WPF,

From Eq. (52) we have

w 'c= Mf dk [p2 /(A2 + Ke2)] (N. 2/k) cos 2p sin k(z + H) cos kA

= (M14) dk [p2/(k2 + K0
2)] (N ,.2/k) cos 2p[sin k(z + H + A) + sin k(z + H - A)]

-(iM/4)f dk[p2/(k 2 + K' 2 )] (N,,2/k) cos 2pIeik(z±+H+A)

{ -eik(A-z-H) for A - z - H > 0)1
teik(Z+H-A) for z + H - A> 0 JJ

In the second line of this equation a trigonometric identity is used, and the lower limit of the
integral is extended to - -, where we use the fact that the integrand is even in k. We use this
fact again in the third line, which is written this way so that we can now close the contour with
a semicircle of infinite radius in the upper half-k-plane. Only the pole at k = iKo is enclosed,t
as well as the poles on the imaginary k axis associated with N, 2 (see Eqs. (53) - (56)) at k= ikj.
By the residue theorem

W.V2 = 27Ti [-Q(iKo) + j Q(ikj)], (1B2)

where, e.g., /(iKo) is the residue at the pole k = iKo. With use of Eq. (56) we obtain

w c I p(iK ) 2 cos 2p(iKo) K kjZ-]
W2 4 K p Vo cos 2 p(iKH) [eK(A`Z ) - sgn (A - z - H) eko!A-Z-HI] (B3)

I p (i k)2 cos 2p(ik) Ie-kj(A+z+H) - sgn (A - z - H) e kjAz-H[
4 '(Ko2 - k j2)(I1 - F.)kj)

The inclusion of the poles associated with N, 2 effectively removes the singularities associated
with the first term.

tFor K very slightly below the real axis, one has from Eq. (51),

K2- t,,'-i8 for ReK > VV(
5ti V 8'-K2-r for Re K< ;V,, J

where 8 is a small positive number.
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Appendix C

Analytic Continuation of F(z) = -- a'

We have

F(z) = V(z -a) (z + a) = 'r41 ei(eI+02)/2 = pets

where

z-a rl er60
The situation is as depicted in Fig. C I where a is real.

r2y (xy)

2_ , C

(a,o) x 9 '60
(-a,o)

Fig. C I - Complex z-plane and relevant parameters

z = X + iY

r, = (x-a)2 + y2

r2 = N/(x + a) 2 + y2

0, = tan- -x- a

02 = tan- I Y
x + a

where - o7 < 01, 02 < Tr. In the second part of the sketch are shown eight numbered points; nos.
1-4 are on the axis and nos. 5-8 are near the real axis (within a very small distance e). With these
formulas we construct Table Cl.

Noteworthy is that phase ( jumps discontinuously in crossing the real axis from point 5
to point 6 or from point 7 to point 8. If we exclude the branch cut from (- a, 0) to (a, 0) on the real
axis from consideration, the function F(z) is indeed single valued and analytic everywhere else
in the z plane, as can be seen by considering the phases in the sequence (9, 6, 4, 8, 1.7, 3, 5, 2),
for example. Put another way, the function F(z) is single valued and analytic on one of the two
Riemann sheets (- r < I T r and excluding the branch cut).
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Y

(-ao)

l
'3

1
x
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*8
(a,o)

4
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Table C 1 -Complex Z-plane

Point j Coordinates [x, y] r, r2 { ] 02 ] (

I [x, 0]1 > x-a x + a 0 0 0
2 [-x,O] J x + a x-a 7T 7T 7r

3IOy } Ta al > IT7/24 [0,Y] Y > { /a2 + Va+y2 -(7_>) -7/ 2,

5 [-x, e] a+x a-x 7r E 712 + E
6 [X, -E] 0 < x< -IT - E Iv/2 -E
7 [X, E] FE 0T/-E
8 [-x, -E] {ax a +x - E(7 E) -e- 7T/2 -E

9 [-x,-e] x > a x + a x-a -I7 -(7T-E) -7T + e
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Appendix D
FILON'S METHOD AND RELEVANT PROCEDURES

Given is the integral

G(a, b) = f F(x) f(x) dx (D1)
a

which is to be evaluated numerically. The interval (a, b) is divided into 2n subintervals, each of
width h, where n is an integer. There are 2n + I associated mesh points and function valuesf
(i = 1, 2, ... , 2n + 1). The integrand is factored in such a way that F(x) is analytically integrable,
and the mesh size h need only be small enough thatf(x) can be reasonably accurately fitted by a
parabola in an adjacent pair of subintervals, i.e., by a second-order Taylor expansion about the
center of this pair of subintervals. Then

n fx2r+h f2r+ + , - 2f22 fr- f2-
G(a, b) = a J dx F(x) { 2h2 (x - X2r) 2 + 2h (x - x2r) +f2

r-1 X2r1-'

n

- a (h/2) [(f2r-+I +f2r-t 2fi2r) I2(x2,) + (f 2 r+1 f2r-I) Il(x2r)+ 2f2, Io(x2r)]
r=t

= a (h/2) {ffr-t [12(x2r) -II(x2r)] + 2f 2r[I0(x2r) - I2(x2r)]
r= t

+f 2 r+1 [I2(x2r) + I1(X 2 r)1 } (D2)

where

Ij(x)-f du F(hu + x) uJ (=0, 1, 2).

As an application of this method, the reader can verify that Simpson's rule is obtained for the
special case F(x) = I in Eq. (Dl). Another case we use is for the functions

F(l)(m) _ e-mo, F(2)(M) -- e-h cos Ind, F(3 )(m) e-m-e sin md (D3)

and associated integrals GO), G(2) 3 and G in Eq. (Dl). The latter integrals a;_ dl-i uLamed from
the evaluation of

rb

fb JV(m) f (m) d m,
a

where

Y(m) _ e- eimd. (D4)

69



M. H. REILLY

Assuming thatf(m) is real,

G(t) = lim Re (v), G(2) = Re (C), G(3) = Im (W) (D5)
d -)

and the integral

-1

associated with Eq. (D2) is easily evaluated. For constant stratification (V6 = 0, but Vor $4 0) we
are faced with evaluation of integrals of the type in Eq. (D3), but with m in the trigonometric
functions replaced by mnie Vm)+ V7r. To take advantage of Filon's method, we cast the problem
in the form of Eq. (D4), where the real function f(m) is, however, replaced by a complex func-
tion which approaches it as m becomes large. The replacement is

f(m) -ei~no-mIf(mo). (D7)

The evaluation procedure of Eq. (D5) is unchanged, albeit slightly complicated by the fact that
the function in Eq. (D7) is now complex.

The integral in Eq. (D6) can be rewritten as

Ij(m) = emah Jj(a),

where a = h(o - id), and

Jj (a) =(a /a a)i J 0(a), (D8)

where

JO(a) = | du era -' (ea - e-a)

These procedures simplify the evaluation.
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